Solution Set 6, 18.06 Fall '12

1. Do problem 9 from 4.4
(a) We write q_{1} and q_{2} as the columns of a matrix Q :

$$
Q=\left(\begin{array}{cc}
.8 & .6 \\
-.6 & .8 \\
0 & 0
\end{array}\right)
$$

We compute

$$
P=Q Q^{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

Indeed it is the case that $P^{2}=P$.
(b) $\left(Q Q^{T}\right)^{2}=Q Q^{T} Q Q^{T}=Q I Q^{T}=Q Q^{T}$
2. Do problem 23 from 4.4

We take $q_{1}=(1,0,0)$. We will find q_{2} (up to scaling) by subtracting off the projection onto q_{1}.

$$
q_{2}^{\prime}=(2,0,3)-(2,0,3) \cdot q_{1}=(0,0,3)
$$

We now scale to find q_{2}.

$$
q_{2}=q_{2}^{\prime} /\left\|q_{2}^{\prime}\right\|=(0,0,1) .
$$

We find q_{3} (up to scaling) by subtracting off the projection onto q_{1} and q_{2}.

$$
q_{3}^{\prime}=(4,5,6)-(4,5,6) \cdot q_{1}-(4,5,6) \cdot q_{2}=(0,5,0) .
$$

We now scale to find q_{3}.

$$
q_{3}=q_{3}^{\prime} /\left\|q_{3}^{\prime}\right\|=(0,1,0) .
$$

This gives $A=Q R$ where

$$
\begin{aligned}
Q & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
R & =\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 3 & 6 \\
0 & 0 & 5
\end{array}\right) .
\end{aligned}
$$

3. Do problem 31 from 4.4

Each column has norm 2 so we should take $c=1 / 2$ ($-1 / 2$ works as well).

To project b onto the first column we simply take

$$
\frac{1}{2}(1,-1,-1,-1) \cdot b=-1 .
$$

Then the projection is just $-\frac{1}{2}(1,-1,-1,-1)$.
To project onto the plane that is spanned by the first two columns, we add the projections on to both of them:

$$
\begin{gathered}
\left.\frac{1}{2}((1,-1,-1,-1) \cdot b) \frac{1}{2}(1,-1,-1,-1)+\frac{1}{2}(-1,1,-1,-1) \cdot b\right)(-1,1,-1,-1)= \\
\frac{1}{2}((-1,1,1,1)+(1,-1,1,1))=(0,0,1,1)
\end{gathered}
$$

4. Do problem 3 from 8.5

The zero vector is orthogonal and has length 0 .
Alternatively, $(1,-2,0,0,0 \ldots)$ is orthogonal and has length $\sqrt{5}$.
5. We begin by writing their derivatives:

$$
0,-\sin (x), \cos (x),-2 \sin (2 x), 2 \cos (2 x) .
$$

Then the corresponding differentiation matrix is:

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 2 & 0
\end{array}\right) .
$$

6. Matlab problem; see Matlab solutions.
7. Do problem 3 from 5.1
(a) False: consider the two by two case: $\operatorname{det}(I+I)=4$ but $1+$ $\operatorname{det}(I)=2$.
(b) True: $|A B C|=|A B| \cdot|C|=|A| \cdot|B| \cdot|C|$.
(c) False: consider the two by two case: $\operatorname{det}(4 I)=16$ but $4 \operatorname{det}(I)=$ 4.
(d) False: Take $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Then $A B-B A=$ $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ which has determinant -1.
8. Do problem 12 from 5.1

For two by two matrices A, we have

$$
|c A|=c^{2}|A| .
$$

So the actual determinant is

$$
(a d-b c) /(a d-b c)^{2}=1 /(a d-b c)
$$

9. Do problem 25 from 5.1

Notice that two times the first row is the second row, so the rows are not independent so A is not invertible and so it has determinant 0 .
10. We may perform the first step of the elimination to obtain some matrix B whose determinant is the same as that of A, whose first column is a 1 or a -1 followed by zeroes, and for which the 5×5 matrix B^{\prime} obtained by removing the first row and first column has entries that are all $0,2,-2$.
Now, we consider the cofactor expansion along the first row.

$$
\operatorname{det}(A)=A_{1,1} C_{1,1}+A_{1,2} C_{1,2}+\cdots+A_{1,6} C_{1,6}
$$

where $C_{i, j}$ is the cofactor obtained by removing the i th row and the j th column.
Then all of the terms besides the first one are zero, since by removing the first row and any column that is not the first we obtain a matrix for which the first column is all zeroes and so has determinant zero.
The first term is divisible by 32 . To see this, note that $A_{1,1} C_{1,1}$ is plus or minus 1 times the determinant of B^{\prime}.
Then we may factor a 2 out of B^{\prime} to get that $\left|B^{\prime}\right|=2^{5}\left|B^{\prime} / 2\right|=$ $32\left|B^{\prime} / 2\right|$. But every entry of $B^{\prime} / 2$ is an integer, and so $\left|B^{\prime} / 2\right|$ is an integer (to see this, look at the permutations definition of determinant). Then 32 times an integer is divisible by 32 .

